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Abstract. This paper proposes a multibody system (MBS) procedure
for a novel aperture grating device which considered as a rigid-flexible
multibody system. The MBS model is constructed based on the load
assumptions due to grating movement. This movement can be utilized
in laser generation and its consequent applications involve precision
measuring instruments, optical communication and many other appli-
cations. The MBS model is used to estimate the system accelerations,
static as well as dynamic loads based on the obtained Lagrange multi-
pliers. According to the dynamic behavior and the generated forces, the
mechanical design process of the grating device can be implemented with
trade offs optimization in terms of grating parameters. The numerical
manipulations of a proposed grating device are presented using MAT-
LAB symbolic toolbox with very good results regarding the positioning
precision, stability and design specifications.

Keywords: Multibody dynamics · Rigid-Flexible systems · Grating
device system

1 Introduction

The grating device of high inertia and supremely precision is the core element
for optical devices of observational instruments which are applied in various
fields[8]. Recently, research and development have made progress in the areas
of optimization, modeling, simulation and design of grating devices [12]. The
structure analysis, the kinematics and dynamics analysis of large aperture grat-
ing device including both the macro and/or micro-drive control mechanism are
important parameters to optimize grating structure [3]. Several methods used
for the modeling, design, control and analysis of the grating devices are carried
out [6], in which the dynamics model is based on finite element analysis (FEA).
FEA can be considered more suitable for modeling elastic bodies subjected to
small deformation behavior, while the grating devices show definite rigid body
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motion and deformable motion of the body as well. Multibody system dynam-
ics became the most economical venue in product design and optimization of
complex mechanical systems. [11] shows that the MBS dynamics is the most
suitable technique to model those systems that show definite rotations as well
as small deformation. The main parameters affecting the stability of the grating
device are system structure and control method [10]. Further improvement of the
stability and design of the grating device can be achieved by implementing the
multibody system approach in order to involve what other methods ignore. This
paper is organized as follows: Sect. 2 introduces the mechanical grating device
as a multibody system. In Sect. 3, the constraint’s function is expressed, and the
model is constructed. Section 4 presents the simulation results that are followed
by the conclusion in Sect. 5.

2 Kinematics of Grating Device Motion

The grating device shown in Fig. 1-a can easily be identified as a typical par-
allel mechanism [6]. This mechanism includes two transnational joints and one
spherical joint lateral shift X1, longitudinal piston Z1, angular tip θ, angular
tilt φ and linear rotation ψ. Most of grating device applications require that
the tiling accuracy of translation and rotation in the millimeter range be kept
on the micro-radial and nano-meter scale and be maintained stably for a long
time. The grating device, as a multibody system consists of a base, disk1, disk2,
grating mass, five flexure bodies and five flexible bodies considered as an elastic
elements for the movement of piezoelectric actuators, see Fig. 1-a. Defining the
coordinate system as (X0, Y0, Z0) as the global frame that is fixed in time [7].
The local coordinates of an arbitrary point P lie on the grating mass (body 4 )
with respect to the body frame (x4, y4, z4) can be described by the vectors ūi

r

for rigid bodies and ūi
f for flexible bodies while the global position r, define with

respect to the global coordinates can be expressed as [1]:

(a) Grating device system (b) Point P define on grating mass

Fig. 1. Grating device as multibody system
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ri = Ri + Ai (ūi
r + ūi

f ) (1)

where ri = [rix, riy, r
i
z]

T , is the global position of an arbitrary point, Ri =
[Ri

x, R
i
y, R

i
z]

T , is the global position of the origin of the grating coordinate sys-
tem, and Ai is the transformation matrix function on generalized coordinate
system, see Fig. 1-b. It is clear from Eq. (1) that the global position vector of an
arbitrary point on the body coordinate system can be written in terms of the
rotational coordinate of the body, θi = [φi, θi, ψi]T , as well as the translation
of the frame-origin of the body, Ri. That is, the most general displacement can
be described by a translation of a reference point plus a rotation about an axis
passing through this point [2]. In the floating frame of reference formulation,
the deformation of the flexible body can be defined concerning its reference [5].
Multibody systems with rigid and flexible bodies are subjected to kinematic
constraints resulting from mechanical joints. The constraints equation can be
written as:

C(qr,qf , t) = 0 (2)

where C is the vector of constraint functions, qr is the vector of rigid bodies
coordinates, qf is the vector of flexible bodies coordinates and t is time. The
equations that govern the dynamics of a multibody system can be systematically
obtained as [1]: ⎡

⎣
Mrr Mrf CT

qr

Mfr Mff CT
qf

Cqr Cqf 0

⎤
⎦

⎡
⎣
q̈r

q̈f

λ

⎤
⎦ =

⎡
⎣
Qr

Qf

Qd

⎤
⎦ (3)

where Mrr is the system mass matrix associated with rigid bodies, Mff is the sys-
tem mass matrix associated with flexible bodies, The dynamic coupling between
the rigid body motion and the flexible body deformation is represented by the
two matrices Mrf and Mfr. The matrices Cqr and Cqf are the Jacobian matrices
of the kinematic constraints function C, λ is the vector of Lagrange multipliers
and Qd is the vector that absorbs all quadratic terms of velocity and Q is the
vector of externally applied forces. Equation 3 yields a system of differential alge-
braic equations (DAE). The vector q̈r and q̈f can be integrated to determine the
coordinates and velocities for rigid and flexible bodies respectively. The vector λ
can be used to determine the generalized reaction forces that used for initiating
the design process.

3 Multibody Model of Grating System

The model of the grating system shown in Fig. 1, can be constructed, without
loss of generality, as shown in Table 1. Based on the application, the movement
grating mass can be described in spatial with five movement translation on X
and Z and rotational about three axes with Euler angles φ, θ and ψ. Let the
contact point P is located on the grating mass frame. The system of generalized
coordinates denoted by qr and can define function of Euler angels as:
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Table 1. Components of Grating device system

Joint Type Body(i) Body(j)

Fixed Grating Base Ground

Prismatic(X) Disk1 Grating Base

Prismatic(Z) Disk2 Disk1

Spherical Grating mass Disk2

Fixed Flexure bodies Grating mass

Fixed Flexible bodies Flexure bodies

Fixed Flexible bodies Grating base

q1
r =

[
q11 q12 q13 φ1 θ1 ψ1

]
(4)

where qr
1, qr

2, ......, qr
14 are local coordinates system for each body in grating

device model define in translation and rotational coordinates. The vector of elas-
tic bodies coordinates qf can be expressed in terms of the modal coordinates
and equal zero in the case of a rigid body displacement[4]. The constraints equa-
tions of the grating device which considered as holonomic constraints Ch can
be obtained using multibody constraints equation of Spherical, Prismatic and
Rigid joints. Figure 2-a shows a spherical joint between grating mass and disk2.
The kinematic constraints of the spherical joint can be written as:

Ch(q3, q4, t) = R3 + A3ūi
3 − R4 − A4ū4

p = 0 (5)

where R3 and R4 are the global position vectors of the origins of the coordi-
nate systems of bodies 3 and 4 respectively. A3 and A4 are the transformation
matrices of the two bodies connected and expressed a function on orientation
coordinates, ū3

p and ū4
p are the local position vectors of the joint. Constraints

equation of spherical joint allows the grating mass to rotate around three axes
with φ, θ and ψ, see Fig. 1-a . Figure 2-b shows a prismatic joint between base
and disk1 which allows grating mass translation in Z direction. Constraints equa-
tions for other rigid and prismatic joints can be defined similarly to spherical

(a) Spherical joint (b) prismatic joint

Fig. 2. Holonomic multibody joints
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Fig. 3. Rigid joint between flexible body4 and flexure body4

joints [2]. Using the kinematic description of the Floating Frame of Reference
formulation FRR, the vector of constraints equation of a flexible body can be
expressed. Figure 3 shows a fixed joint between flexible body5 with flexure body5.
Symbolic computer procedures can be used to compute constraints equation [9].
Other equation of motion items can be computed as [2]. The solution of Eq. 3 pre-
sented in the preceding section defines the vectors of acceleration and Lagrange
multipliers which can be used to determine the vector of generalized constraint
forces.

4 Numerical Simulation

In this section, the mathematical model of a small-scale grating device is con-
structed using the multibody dynamics approach based on the Lagrange for-
mulation described in the previous section using MATLAB symbolic toolbox.
Simulation results that include kinematics and dynamics results are shown. The
physical parameters are listed in Table 2 define the initial parameters of the grat-
ing system. The adjustment of the grating relies on the collective effect of the
five piezoelectric actuators directly act on grating mass through flexure bodies.
The external applied forces due to piezoelectric actuators are F = 4700 N, see
Fig. 1-a. By applying external forces, the corresponding structural displacement
of the system can be obtained by controlling movements of piezoelectric actu-
ators. In literature, various types of numerical integrators can be used to solve
the resulting DAEs of multibody system. Among of these methods are: Rung-
Kutta, Adams-Bashforth, Newmark and HHT Method. Explicit and/or implicit
integrators can be implemented according to the status of numerical stiffness of
the integration process and the number of coordinates (full coordinates integra-
tion or reduced order integration). As presented in [4], the multi-step - explicit
(Adams-Bashforth) method is the most suited integrator for rigid and/or flexible
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bodies with small deformation problems in the case of full-coordinates integra-
tion. Table 3 illustrates maximum grating parameters the system can achieve
with applied forces. These values are similar to those found in [10].

Table 2. Grating device parameters employed in the numerical simulation

Components Mass (kg) Ixx(Kg.m2) Iyy(Kg.m2) Izz(Kg.m2)

Grating base 86.34 4.92 3.64 2.8

Disk1 0.15 0.000035 0.000035 0.000018

Disk2 0.11 0.000024 0.000013 0.000013

Grating mass 78.26 1.8 1.3 0.985

Flexure part 0.068 0.0001 0.0001 0.0000025

Flexible part 0.012 0.00001 0.00001 0.00000063

Table 3. Maximum Displacement of DOF

DOF X(mm) Z(mm) φ(rad) θ(rad) ψ(rad)

- ±1.5 ±3.00 ±2.5 ±1.5 ±2.5

Figure 4-a shows the global position vector of the point P that coincides
with the grating mass frame. The translation along Z-axis reaches about 3 mm.
The translation along X-axis 0.5 mm at the same forces while there is no move-
ment along Y-axis and that indicates the formulation accuracy of multibody
constraints equation. Figure 4-b shows the orientation of the point. In order to
establish design process, multibody model can be used to compute all dynamic
reaction forces acting on system bodies. As example Fig. 5-a shows reactions
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(a) Displacement of the point
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(b) Orientation of the point

Fig. 4. Position of point P located on grating mass
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(a) Reaction forces (b) Reaction torques

Fig. 5. Reaction forces acting on grating base
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(a) Translation of local frame
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(b) Orientation of local frame

Fig. 6. Displacement of the flexible body4

forces acting on grating base, the values of the forces in X-axis and Z-axis are
swinging due to dynamic affect and the only reaction force in Y-axis due to grat-
ing mass. Figure 5-b shows reactions moments acting on grating base. All other
reactions forces acting on system joints can be computed. The flexure and other
flexible bodies in the system are considered in the design of the tiling system
to ensure the to system stability. Flexible bodies that exhibit valuable elastic-
ity behavior, restrict the movement of the system and the available degrees of
freedom. Figure 6 shows the displacement and orientation of the local frame of
body 5. The values of dynamic reaction forces and moments computed from
multibody model are similar as ones presented in [6], in which the ANSYS soft-
ware is utilized. These forces represented in [6], in terms of the identification
of stiffness values along the various axes, by dividing the reaction loading by
its deformation output, the stiffness could be identified. The estimated torques
results, both static and dynamic torques can be used to optimally design the
mechanical structure of grating tiling device, and therefore, control precisely
the movements of grating mass. This computational models is important in all
phases of system synthesis, analysis, design and control of the grating system.
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The multibody model will be used later for parameters identification of grating
device.

5 Conclusion

In this paper, a systematic procedure based on multibody system approach is
implemented in the modelling and simulation of novel grating tiling device. The
symbolic as well as computational work has been carried out using MATLAB
software. The symbolic derivation is carried out and the inherent equations of
motion of the grating system has been derived. The solution of the equations of
motion involve the system generalized coordinates and the associated Lagrange
multipliers as well. These multipliers can be used to estimate the generalized
forces and can be utilized in the design procedure of the system. Based on
the simulation work of the multibody model, the optimal design of such grat-
ing devices can be established for maximum ranges of grating parameters. The
obtained design of the grating device meets the requirements of high stability
and can be used for high precision applications.
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